第726章(2 / 2)
飞机出现初期,受发动机力量限制,飞机速度很慢,为了增加升力,飞机机翼都是双层。随着发动机的改进,机翼变成单层。机翼在初期需要精心设计,以增加升力。但发动机的改进逐渐降低了对机翼形状的要求。随着军事需求,飞机的反雷达侦察要求使得机翼形状完全不必考虑空气升力的优化设计,转而考虑对雷达的隐藏能力。所以就出现了机翼和机身下面是一整个平面的结果。
在某些情况下,伯努利效应会带来危害。两条船在水上并列行驶时,中间的水流相对流速快,外侧的水压会使两船靠拢。如果一条船很小时,压力会使小船撞到大船上。
在游泳池或河中游泳,离开水以后身体上总是湿漉漉的,也就是有些水会粘滞在身体上。某些特殊材料,比如经过纳米表面加工后,可完全不粘水。通常的物体总是或多或少会粘水。同样,空气也有类似特性,不过不易被观察。观看体育运动时,会发现一些有趣的结果。比如足球,有香蕉球、落叶球,还有一种路线飘忽的球。乒乓球有弧圈球,侧旋球等。这些球的轨迹和我们的通常预计的有很大差异。这是怎么回事呢?
球在前进的同时带有旋转,而球表面粘滞了一层空气,这层空气随着球共同旋转,与迎面而来的气流相互作用,就产生了类似于机翼的情况。如图4.3所示,球本身向左飞行,从球上空观察,描述球旋转方以及球不同方位气流按照球前进方向为基准。那么旋转方向是右旋。飞行气流与球左侧的旋转粘滞气流方向一致,流速加快,而与右侧的旋转粘滞气流方向相反,流速降低。那么球的右侧压力大于左侧,球飞行轨迹与无旋转的球飞行轨迹相比就向左偏移。同理,左旋球向右偏移,上旋球向下偏移,下旋球向上偏移。打乒乓球就可以验证结果。一般情况下,左右旋和上下旋会结合在一起。比如左上旋,或右下旋。那么球的偏移轨迹也是对应偏移轨迹的结合。偏离程度与两种旋转的程度相关。同样,足球中的香蕉球、落叶球原理也是这样。香蕉球相当左旋或右旋球,落叶球相当上旋球。这种因旋转到导致轨迹偏移的现象以德国人马格努斯的名字命名。特殊情况:足球中有一种球在空中的轨迹居然是忽左忽右。这种球完全不旋转,在空中应当是标准的抛物线。但球场中总有些小风,这些风方向不定,不同位置的风向可能相反。完全不旋转的球在空中就受这些小风的影响,可左可右,并且速度快,很容易干扰守门员的判断。这种情况和滑膛枪的子弹类似,在超出100米后,子弹不知道飞到哪里去了。所有滑膛枪时代的战术是以量取胜,大量射手排成阵列同时射击。双方均采用此方法,战术情景类似排队枪毙。在进入线膛枪时代,进行远距离射击,还需要观察手,给出风速和方向,以便校准射击。
观察:
伯努利原理的另类应用。在赛车场上,为了增加轮胎与车道的摩擦力,以增强赛车控制能力和速度,赛车的外形制作是让赛车与地面之间气流速度快,气压小,赛车上方流速慢,气压大,这样增加了赛车的抓地能力。
足球射门集锦中总有一些香蕉球出现,观察球员在触球时的动作和球飞行轨迹之间的关系。
巴西有个球员儒尼尼奥擅长踢飘忽球,仔细观察电视慢镜头回放中的忽左忽右轨迹以及球本身。
网球、高尔夫球、台球、排球都有旋转形成轨迹偏移情况,最突出的还是乒乓球,球拍制造旋转的能力超强,当然主要还是球员技术。在自己熟悉的球类运动中实践旋转的制造,是否能总结出制造旋转的规律?操场和球不是必须品,玻璃珠及类似物品也可以尝试。
球表面粘滞流体,带来马格努斯效应,也降低球的旋转。观察高尔夫球,其表面有大量小坑,这个可以大幅度增加高尔夫球的飞行距离和旋转时间。小坑里的空气,旋转飞行时一直保持着内,在飞行中外部气流与坑沿上的空气膜作用,对球的飞行和旋转的摩擦作用远小于光滑球面的结果。同时气流可更顺利抵达球的背后,球的迎面和背后的压力差别小,球可以飞的更高更远。在博物馆里面寻找古代的类似玩具,是否表面有同样结构?
自然中的风筝:在大风中,蜘蛛被吹上千米高空,而它吐出的丝长长地拖着后面。由于蜘蛛轻小,风很轻易就将蜘蛛带到几百公里以外的地方。当海中火山喷发形成一个新的岛屿时,首先到来的就是蜘蛛及其他类似体型的昆虫,植物的种子虽然来了,但还没有适合的条件发芽生长。而最早在这里生存下去动物就是蜘蛛,为什么?
秋天大雁南飞,经常是人字形或一字形。难道大雁有检阅队伍的爱好?早期解释是大雁如此可以节省不少体力,这种说法可能过于乐观。结合这些群体生活的迁徙鸟类行为,后来的解释大致是综合因素,大雁这样飞行便于确定队伍中各自的位置,至于节省体力尚待进一步分析。大约可估计,节省体力存在,但不如通常认为的那么多。不过鸟类长途跋涉后,体重减轻可达30%以上,节省一点体力就意味着生存可能性更大。另外鸟类飞行无法和飞机相同,翅膀还要产生向前的动力。电视慢镜头可以显示鸟类扇动翅膀的动作,和昆虫的方式不同(鸟类挥动翅膀,从鸟翼前缘向后方生出旋涡状的气流,和飞机螺旋桨后方产生的气流非常类似。例外:蜂鸟,体型非常小,飞行方式是鸟类和昆虫的结合)。
除了进行有组织飞行外,降低体力消耗主要是降低飞行时空气对身体的阻力。通常所说的流线型,就是指那些有效降低空气或水阻力的外观结构。以空中为例,飞行时什么因素影响阻力?鸟表面粘滞着一些空气,这些粘滞空气和翅膀两侧气流作用带来阻力及升力。空气迎面冲来,相当于临时压缩,压力增加。而背后部分则空气补充滞后,相当于临时膨胀,压力减小。那么正面和背后的空气压力差也成为阻力的来源。除了提升升力的飞羽外,那些覆羽将整个轮廓构造为流线型,使得正面空气更易流到背后,压力差减小。实际上,慢速飞行时粘滞阻力是主要因素,快速飞行时压力差阻力是主要因素。观察空中飞行者,鸟类基本都是流线型身材。昆虫,比如苍蝇,不必在乎什么身材(3亿年前,地球上充斥着大量大型昆虫,体长近1米的蜻蜓。这些昆虫体型没什么变化,那说明它们的飞行方式和现代鸟类完全不同)。水的密度比空气大得多,流线型依然重要,但粘滞阻力也必须降低。悉尼奥运会,索普穿着鲨鱼皮泳衣夺得3枚金牌,使得鲨鱼皮泳衣名震泳界。后来被认为是不正当竞争,又禁止使用。而鲨鱼皮表面粗糙,可当砂纸,进行光滑打磨。正是这些粗糙褶皱,起到了高尔夫球表面的效果,大幅度降低了粘滞阻力。
人类制造了大量空中和水中的机械。为了增加效率,流线型的外壳是必不可少(例外:直升飞机,飞行速度慢,为了增加巡航速度,外型基本还是流线型,存在大量外挂装置)。不过空气密度小,当发动机力量足够时,外型的要求可适当降低。水的密度大,所以船只的外形构造是提高速度的最重要因素。潜水艇的形状和海豚、鲨鱼很类似,为了模拟这些快速动物的弹性皮肤,潜水艇外部还特意覆盖厚厚的橡胶层。但无论怎么做,都是形似而不是神似,毕竟不能任意扭曲身体。
观察:
坐轮船时,观察尾部的扰流,那些小旋涡一个接一个。飞机翅膀、大雁翅膀后面都存在,但眼睛无法观察空气中的旋涡,除非卷进尘土或雾滴。但水中很容易观察。
飞机降落减速时,翅膀上的减速板升起,破坏了伯努利效应,增加了前后压力差,有效减速。军用飞机甚至还放个降落伞进行减速,当然伞是拖着后方而不是上方。
赛艇,虽然是水上机械。但在使用中,整个艇身基本都在水面上,就尾部贴在水面,提高前进动力。阻力来自空中,动力来自水里,所以速度奇快。但操作不当,赛艇会飞到空中而出事故。
集体跑步时,形成一个长长的人链。第一个领跑的人,阻力最大,后面的就省力。为什么?田径比赛的长跑项目,那些冠军基本都不领跑,最后冲刺。除非实力超群,无可匹敌。
如右图,三角形向左移动,气流产生的阻力是向右方。如果移动速度相同,这两个三角形,那个受到的阻力小些呢?观察水滴在空中下落时的形状(水滴速度越快越好),有条件的情况下,用照相机拍摄水滴形状。对比水滴形状与三角形。
梅乐芝经理的科普文章 (五)
第5节热
夏天感到热,冬天感到冷,通常我们以自己的冷热感觉作为对环境的判断。但这种判断并不准确,甚至会出现判断相反的情况。比如同样的井水,夏天酷热时节,这水真是沁人心脾啊,冬天一双冻僵的手则觉得真是春天般的温暖。所以精确衡量冷热需引入温度的概念。我们生活的环境最容易接触的就是水,以水的结冰点定义为0度,沸腾点为100度(在海平面的高度)。这就是瑞典人摄耳修斯对温度的划分。荷兰人华伦海特制定了另外一种划分方法,把一定浓度的盐水结冰温度定为0度,把纯水结冰温度定为32度,水沸腾的温度定为212度。通常我们称为摄氏温度或华氏温度。我国采用摄氏温度划分,以下叙述中温度全部采用摄氏温度。
温度定义好以后,对于宇宙任意物体的冷热效果,都用其温度来表达。原则上温度没有设上限,可以任意高(实际上,光速给出了对应温度的上限),但有下限,最低到零下273.15度,记为-273.15c。这个令人意外。太阳内部温度上百万度,某些恒星表面1万度以上,太阳表面温度5500c。地球表面最热的地方是火山口,可达1000c以上,在南极洲,最冷的地方可达-89c。大多数地球的生命可以存活的温度范围大致从0c到50c。少数可以生活中极限环境中。冻原的细菌可以在-150c生存,海底热泉附近的细菌可以在400c生存。多数哺乳动物的体温和我们接近,维持在37c左右。我们的体温基本恒定,如果体温过高或过低,都会危及生命。
温度高低不同我们感觉热冷不同,但并不是温度决定一切。在炉子上烧开水,烧开小锅水和大锅水的时间不同。身体暴露在0c的空中,人体还可以坚持很长时间,但人体泡在0c的水中,很快就要丧生。造成以上差异的就是热量。
首先,热量可以传递。烧开水时,无论是燃气还是电炉丝,其温度都在800c以上,开水温度才100c,所以热量是由燃气通过锅传至水。气温0c,我们体温37c,那么热量就由身体传到空气。热量的变化带来了温度的变化。我们定义热量,单位用卡。如同定义长度,单位用米一样。1卡就是1克水升高1摄氏度所需的热量。大锅水比小锅水量大,升高一度需要的热量多,而炉子提供的热量固定,所以烧得慢。温度上升或下降是因为热量的进入或丧失。而热量的进入或丧失是因为热量进出的两方温度有差异。
其次不同物质在温度变化时热量需求是不同的。在所有物质中,同重量物质等温升高水需要的热量最多。换而言之,在重量相同、降温数量相同情况下,水降温时释放的热量最多。加热1克空气使得温度上升1度需要的热量仅是水的六分之一,而且1克空气的体积几乎是1克水的1000倍!身体向空气传热时,体表的空气很快就被加热,同时皮肤丧失热量因而温度下降。两者温度相同时不再进行热量传递。而距离皮肤较远的空气温度又低于皮肤表层空气温度,所以热量又继续向远离皮肤的方向传递。导致皮肤表层空气温度下降,而这又导致皮肤继续向空气散热。身体内部也类似。从肌肉到皮肤,温度逐渐下降。这样从肌肉到空气,形成了温度的连续下降的一个持续状态。比如:肌肉37c,脂肪内层35c,外层30c,皮肤20c,皮肤表层空气15c…远处空气0c。此时身体不断向外散热,维持着温度分布的稳定。如果身体产生的热量大于或等于保持上述温度分布而需要的热量,人体就能生存下去。在这种情况下,刮来一阵风,就破坏了体表空气形成的温度分布,直接让0c空气抵达体表,人体马上散更多的热出来。此时对身体的状况就相当于不刮风空气温度为-20c时的情况下,人体建立的温度分布。冬天气温不变,刮风和不刮风的日子,身体感觉完全不同。动物的皮外毛发密集,固定住大量空气不受风的影响,这样建立起静态的温度分布,最大限度地降低了恶劣气候的影响。人类使用动物毛皮做衣服,用羽绒填充衣服中间,也是同样原理。当人在水中时,比如在北极的冰海中,海水温度比0c还低一点。皮肤接触同样体积的水,重量几乎是同体积空气的1000倍,加热升温一度需要的热量是4000倍。维持同样的温度分布,人体散发的热量远远不够。所以体温会急剧下降。事实上全身卷缩起来,尽力保持腹部和腋窝的温度,可以生存15分钟。否则5分钟就丧生。而同样在北极附近,夏天后的第一场雪落在因纽特人裸露的皮肤上渐渐融化,他们迎来了新年,安然入睡。思考:
1.四万年前,史前人类有了重大发明,双卷边缝纫技术,这样毛皮制作的衣服不漏风,他们得以进入当时寒冷的欧洲,随后又征服西伯利亚。沙漠中夏天也需要穿类似的衣服,为什么?
2.大象身体没有毛,而它的近亲,猛犸象(最晚于4000年前灭绝),又称长毛象,浑身长满了毛。犀牛同样没有毛,但其近亲长毛犀牛也是浑身长毛(最晚1万年前灭绝)。估计这些灭绝的近亲应该生活在什么环境中?
3.有冬泳爱好者,大冬天凿开冰面游泳。估计能游多久?为什么出水后浑身通红?
4.初夏开始游泳,水温尚低。刚入水身体感觉很冷,一会就适应了。这说明什么?最后可以测量一下体表温度和水温,让没游的人用手指感觉一下即可。
5.人体的热量来自体内储能。在身体热量供应不足时,会打冷颤,事实是肌肉在释放热量。很多时候喝高度酒来御寒,其实是在饮鸩止渴。这时候吃点高热量的东西是正经事。为什么?
6.俄罗斯大妈,基本是胖子的代名词。南方人,比如岭南地区人,都显得干瘦。为什么?北极熊、海豹、海象都安然在冰水中生活,它们身体和人体的差异在哪里?
7.大型鲸鱼经常在两极活动,人类自19世纪开始大量捕鲸。那是工业革命的时代,在石油工业尚未开始时,鲸鱼就是提供润滑油、蜡烛的天然仓库,为什么?
8.有喜好晒日光浴的,在冰天雪地中全身赤裸晒太阳。可以肯定的是,当天天气无风。如果刮大风,还能坚持几分钟?
9.肌肉温度低于正常状态,就丧失部分功能。如果温度严重不足,就表现为冻僵效果。人容易冻僵的部分有手脚耳朵鼻子。为什么?
10.人体吸入空气,会对空气进行加热或散热。扁平鼻子易于散热。高窄鼻子加热快。观察鼻子就知道祖先在那里长期生活。
11.生活在水边的鸟类,腹部有厚厚的绒毛,中间固定着大量空气。在水中时,这些空气就是隔离层,防止水直接接触到皮肤,起到良好的隔热作用。我们使用羽绒衣,就是将这些绒毛填充在衣服内层,形成隔热层。同样,棉花也是类似作用。
早穿棉袄午穿纱,围着火炉吃西瓜。这是说新疆一天内的情景呢。桑拿夏天,天还没亮,就热烘烘的,太阳露个头,蒸笼开始上汽。好一个马拉松式的减肥过程,但除了难受,还是那么胖。持续到凌晨,终于困得合眼了。这是长江流域的情景。
新疆的情况,说明昼夜温差很大。这也是新疆瓜果甜的原因。白天日光强,温度高,植物光合作用,合成大量糖分。晚上气温低,植物消耗低。综合结果糖分积累很高。为什么昼夜温差大呢?太阳出来了,天空晴朗无云,大量热量传到地面。而地面沙子比例很高,和水相比,同样的热量,沙子升高的温度是水的四倍。少量的热量就可以使沙子温度上升很高。地面温度上升了,空气又被地面加热,所以午穿纱。但在阴凉地方或室内,温度并不高。另外一个重要因素,空气中水蒸汽含量低,人出的汗很容易挥发,所以显得干爽。在高原昆明也有类似效果,只是程度要低些。太阳落山了,失去了太阳的热量补充。地面和空气中的热量依然向太空中以辐射的形式散发。虽然温度很高,但实际储存的热量较少,不存在阻碍散热因素,很快就散发完了,温度降低到辐射散热收支平衡的程度。所以晚上冷飕飕的。
长江流域的情况,说明昼夜温差小。桑拿的起因是空气中水蒸汽含量快达到极限了。这样人体排出汗很难挥发,都附着身体表面。感觉粘乎乎的,很不舒服。夏天时,副热带高气压笼罩着长江流域(参见16页图),气温高,空气对流弱,风少而小。尤其城市中缺乏植被进行辅助降温,导致整天闷热。气温虽然不如新疆高,但人体自身降温措施失效,躲在哪里都没用。空调可以使某密闭空间温度适宜,后果是恶化整个外部环境,并且恶化效果大于密闭空间的适宜效果。至于大多少,要看空调的效率高低了。所以桑拿天气还有一部分的人为贡献。地表泥土为主,含水量大,储存的热量大,散热时空气中的水蒸汽、云都是妨碍散热因素。所以晚上散热效果不佳。在地球同纬度的其他地区,大量都是沙漠。都是副热带高气压和人共同惹的祸,撒哈拉沙漠史前还是草原呢。当然气候是主要因素,环境太脆弱,人只不过小小地推了一把,就让环境万劫不复。同样的情况也出现在新疆东部和甘肃、内蒙西部。
在热带,气温一直很高,不存在四季情况,只存在雨季和旱季。而雨季和旱季交替依赖季风的风向。而暖湿气流只能来自海洋。西双版纳,旱季是11月到来年4月,雨季是4月到11月。那么对应的季风情况,就是11月到4月,刮东北风,所以旱季。4月到11月,刮西南风,风来自印度洋,所以雨季。而太平洋的气流最远可以抵达青海西宁,大西洋的气流最远抵达新疆伊犁河谷。青海和新疆大部分地区,甘肃中西部,内蒙中西部,没有海洋气流抵达。如果没有喜马拉雅山脉及青藏高原,印度洋的气流估计可以抵达。经常光顾这里的气流主要是西伯利亚寒流,因此降雨量很小。地貌以草原、沙漠为主,水主要来自冰川融化。在内陆河流经的地方形成绿洲和贸易中转站,间或可以进行农业种植。近几十年全球气候快速变暖,导致冰川积累不足,逐年退后,依赖冰川融水的地区水供应日渐窘迫。
思考:
1.中国耕地面积,目前集中在华南、长江流域、华北和东北。耕地对水供给的要求较高。而草原要求很低。在历史上,长城是防御草原游牧部落进攻的主要屏障。农业耕作,对降雨量达要求是400毫米,中国的400毫米降水线和长城的路线比较吻合,这个是巧合吗?
2.昼夜温差小的区域应该有什么要求呢?那些是主要因素?
3.空气中水蒸汽含量使用湿度来描述,湿度达到100%就说明目前空气中的水蒸气达到最大量了,无法再增加了。湿度和温度密切相关,温度越高,空气中允许存在的水蒸气越多。通常的湿度都是指当前温度下,空气中水蒸气的数量和最大可存在值的比例关系,称为相对湿度(绝对湿度是指水蒸气和空气数量的比例关系)。桑拿天气,湿度接近100%,在自来水管道上,可以看到凝结大量水滴,为什么?另外地球上最干燥的地方在南极,为什么?阿塔卡马沙漠为什么比不过?
4.早期文明,周围都有大河。埃及有尼罗和,苏美尔有幼发拉底河和底格里斯河,印度有恒河,中国有黄河。为什么?希腊没有大河,但其文明却扩散到地中海和黑海区域。而那些有大河的文明,却没有扩散开?
↑返回顶部↑